top of page

      View my Google Scholar profile.

 

30. Dynamic spatial progression of isolated lithium during battery operations.

F. Liu, R. Xu, Y. Wu, D. T. Boyle, A. Yang, J. Xu, Y. Zhu, Y. Ye, Z. Yu, Z. Zhang, X. Xiao, W. Huang, H. Wang, H. Chen, Y. Cui*.

Nature 600, 659–663 (2021). [link]

29. A morphologically stable Li/electrolyte interface for all-solid-state batteries enabled by 3D-micropatterned garnet.

R. Xu, F. Liu, Y. Ye, H. Chen, W. Huang, Y. Ma, J. Wan, Yi Cui*.

Advanced Materials 10, 2104009 (2021). (co-first author) [link]

28. Dual redox mediators accelerate the electrochemical kinetics of lithium sulfur batteries.  

F. Liu†, G. Sun†, H. B. Wu, G. Chen, D. Xu, R. Mo, L. Shen, X. Li, S. Ma, R. Tao, X. Li, X. Tan, B. Xu, G. Wang*, B. S. Dunn*, P. Sautet*, Y. Lu* 

Nature Communications 11, 5215 (2020). [link]

27. Fabrication of hybrid silicate coatings by a simple vapor deposition method for lithium metal anodes.

F. Liu, Q. Xiao, H. B. Wu, L. Shen, D. Xu, M. Cai, Y. Lu* 

Advanced Energy Materials 8, 1701744 (2017). [link]

26. Regenerative polysulfide-scavenging layers enabling lithium–sulfur batteries with high energy density and prolonged cycling life.

F. Liu, Q. Xiao, H. B. Wu, F. Sun, X. Liu, F. Li, Z. Le, L. Shen, G. Wang, M. Cai, Y. Lu* 

ACS Nano 11, 2697 (2017). [link]

25. Phase-separation-induced porous lithiophilic polymer coating for high-efficiency lithium metal batteries.

D. Wang, H. Liu, F. Liu, G. Ma, J. Yang, X. Gu, M. Zhou, Z. Chen*

Nano Letters (in press).

24.Sensitive, portable heavy-metal-ion detection by the sulfidation method on a superhydrophobic concentrator (SPOT).

H. K. Lee, W. Huang, Y. Ye, J. Xu, Y. Peng, T. Wu, A. Yang, L. Chou, X. Xiao, X Gao, F. Liu, H. Wang, B. Liu, J. Wang, Y. Cui*

One Earth 4, 756 (2021)[link]

23. High-conductivity–dispersibility graphene made by catalytic exfoliation of graphite for lithium-ion battery.

R. Tao, F. Li, X. Lu, F. Liu, J. Xu, D. Kong, C. Zhang, X. Tan, S. Ma, W. Shi, R. Mo, Y. Lu*

Advanced Functional Materials, 2007630 (2021). [link]

 

22. Underpotential lithium plating on graphite anodes caused by temperature heterogeneity.

H. Wang, Y. Zhu, S. C. Kim, A. Pei, Y. Li, D. T. Boyle, H. Wang, Z. Zhang, Y. Ye, W. Huang, Y. Liu, J. Xu, J. Li, F. Liu, Y. Cui*

Proceedings of the National Academy of Sciences 2009221117 (2020). [link]

 

21. Multi-functional anodes boost the transient power and durability of proton exchange membrane fuel cells.

G. Shen, J. Liu, H. B. Wu, P. Xu, F. Liu, C. Tongsh, K. Jiao, J. Li, M. Liu, M. Cai, J. P. Lemmon, G. Soloveichik, H. Li, J. Zhu*, Y. Lu*

Nature Communications 11, 1191 (2020). [link]

20. Particulate anion sorbents as electrolyte additives for lithium batteries.

L. Shen, H. B. Wu, F. Liu, J. Shen, R. Mo, G. Chen, G. Tan, J. Chen, X. Kong, X. Lu, Y. Peng, J. Zhu, G. Wang, Y. Lu*

Advanced Functional Materials 2003055 (2020). [link]

19. Class of solid-like electrolytes for rechargeable batteries based on metal-organic frameworks infiltrated with liquid electrolytes.

S. Ma, L. Shen, Q. Liu, W. Shi, C. Zhang, F. Liu, J. A. Baucom, D. Zhang, H. Yue, H. B. Wu, Y. Lu*

ACS Applied Materials Interfaces 12, 43824 (2020). [link]

18. Anion-sorbent composite separators for high-rate lithium ion batteries.

C. Zhang, L. Shen, J. Shen, F. Liu, G. Chen, R. Tao, S. Ma, Y. Peng, Y. Lu*

Advanced Materials 31, 1808338 (2019). [link]

17. High-quality mesoporous graphene particles as high-energy and fast-charging anodes for lithium-ion batteries.

R. Mo, F. Li, X. Tan, P. Xu, R. Tao, G. Shen, X. Lu, F. Liu, L. Shen, B. Xu, Q. Xiao, X. Wang, C. Wang, J. Li, G. Wang, Y. Lu*

Nature Communications 10, 1 (2019). [link]

16. Anchoring anions with metal-organic framework-funcitonlized separators for advanced lithium batteries.

L. Shen, H. B. Wu, F. Liu, C. Zhang, S. Ma, Z. Le, Y. Lu*

Nanoscale Horizons 4, 705 (2019). [link]

15. In-situ doping boron atoms into porous carbon nanoparticles with increased oxygen graft enhances both affinity and durability toward electrolyte for greatly improved supercapacitive performance.

F. Sun, Z. Qu, J. Gao, H. B. Wu, F. Liu, R. Han, L. Wang, T. Pei, G. Zhao, Y. Lu*

Advanced Functional Materials 28, 1804190 (2018). [link]

14. A high-rate and ultrastable anode enabled by boron-doped nanoporous carbon spheres for high-power and long life lithium ion capacitors.

F. Sun, H. B. Wu, X. Liu, F. Liu, R. Han, Z Qu, X. Pi, L. Wang, J. Gao, Y. Lu*

Materials Today Energy 9, 428 (2018). [link]

13. Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 particles to directly regenerate high-performance lithium-ion battery cathodes.

Y. Shi, G. Chen, F. Liu, X. Yue, Z. Chen*

ACS Energy Letters 3, 1683 (2018). [link]

12. Creating lithium‐ion electrolytes with biomimetic ionic channels in metal–organic frameworks.

L. Shen, H. B. Wu, F. Liu, J. L. Brosmer, G. Shen, X. Wang, J. I. Zink, Q. Xiao, M. Cai, G. Wang, Y. Lu*, B. S. Dunn*, Advanced Materials 30, e1707476 (2018). [link]

​11. Graphene caging silicon particles for high‐performance lithium‐ion batteries.

P. Nie, Z. Le, G. Chen, D. Liu, X. Liu, H. B. Wu, P. Xu, X. Li, F. Liu, L. Chang, X. Zhang, Y. Lu*

Small 14, e1800635 (2018). [link]

10. Understanding the electrochemical properties of naphthalene diimide: implication for stable and high-rate lithium-ion battery electrode.

Y. Shi, H. Tang, S. Jiang, L. V. Kayser, M. Li, F. Liu, F. Ji, D. J. Lipomi, S. P. Ong, Z. Chen*

Chemical Materials 30, 3508 (2018). [link]

9. Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposites enables high-performance sodium-ion capacitors.

Z. Le, F. Liu, P. Nie, X. Li, X. Liu, Z. Bian, G. Chen, H. B. Wu, Y. Lu*

ACS Nano 11, 2952 (2017). [link]

8. Robust iron nanoparticles with graphitic shells for high-performance Ni-Fe battery.

X. Wu, H. B. Wu, W. Xiong, Z. Le, F. Sun, F. Liu, J. Chen, Z. Zhu, Y. Lu*

Nano Energy 30, 217 (2016). [link]

 

7. Nitrogen-rich carbon spheres made by a contunuous spraying process for high-performance supercapacitors.

F. Sun, H. Wu, X. Liu, F. Liu, H. Zhou, J. Gao, Y. Lu*

Nano Research 9, 3209 (2016). [link]

6. Fluorine-rich nanoporous carbon with enhanced surface affinity in organic electrolyte for high-performance supercapacitors.

H. Zhou, Y. Peng, H. B. Wu, F. Sun, H. Yu, F. Liu, Q. Xu, Y. Lu*

Nano Energy 21, 80 (2016). [link]

5. Encapsulation of SnO2 nanocrystals into hierarchically porous carbon by melt infiltration for high-performance lithium storage.

L. Shen, F. Liu, G. Chen, H. Zhou, Z. Le, H. B. Wu, G. Wang, Y. Lu*

Journal of Materials Chemistry A 4, 18706 (2016). [link]

4. Inward lithium-ion breathing of hierarchically porous silicon anodes.

Q. Xiao, M. Gu, H. Yang, B. Li, C. Zhang, Y. Liu, F. Liu, F. Dai, L. Yang, Z. Liu, X. Xiao, G. Liu, P. Zhao, S. Zhang, C. Wang, Y. Lu, M. Cai*

Nature Communications 6, 8844 (2015). [link]

3. Hierarchical nanostructured WO3 with biomimetic proton channels and mixed ionic-electronic conductivity for electrochemical energy storage.

Z. Chen, Y. Peng, F. Liu, Z. Le, J. Zhu, G. Shen, D. Zhang, M. Wen, S. Xiao, C.-P. Liu, Y. Lu*, H. Li*

Nano Letters 15, 6802 (2015). [link]

2. Electrochemical‐reduction‐assisted assembly of a polyoxometalate/graphene nanocomposite and its enhanced lithium‐storage performance.

S. Wang, H. Li, S. Li, F. Liu, D. Wu, X. Feng, L. Wu*

Chemistry 19, 10895 (2013). [link]

1. Polyoxometalate-modulated self-assembly of polystyrene-block-poly(4-vinylpyridine).

X. Lin, F. Liu, H. Li, Y. Yan, L. Bi, W. Bu, L. Wu*

Chemical Communications 47, 10019 (2011). [link]

bottom of page